Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-[(3-Bromophenyl)iminomethyl]phenol

Xiao-Yan Ren and Fang-Fang Jian*

Microscale Science Institute, Weifang University, Weifang 261061, People's Republic of China Correspondence e-mail: ffjian2008@163.com

Received 4 August 2008; accepted 25 August 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.019 Å; R factor = 0.083; wR factor = 0.229; data-to-parameter ratio = 12.6.

The title compound, C₁₃H₁₀BrNO, was prepared by reaction of 3-bromoaniline with 2-hydroxybenzaldehyde at 377 K. The molecular structure and packing are stabilized by an intramolecular $O-H \cdots N$ hydrogen-bond interaction.

Related literature

For related literature, see: Jian et al. (2006); Rozwadowski et al. (1999).

Experimental

Crystal data C13H10BrNO $M_r = 276.13$ Monoclinic, P2 a = 3.9700 (8) Å

b = 10.540 (2) Å c = 13.200 (3) Å $\beta = 98.00 \ (3)^{\circ}$ V = 546.96 (19) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 3.73 \text{ mm}^{-1}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: none 2736 measured reflections	1822 independent reflections 1666 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.082$	H-atom parameters constrained

 $wR(F^2) = 0.229$ $\Delta \rho_{\rm max} = 1.43 \text{ e} \text{ \AA}$ $\Delta \rho_{\rm min} = -1.17$ e Å⁻³ S = 1.131822 reflections Absolute structure: Flack (1983), 145 parameters 787 Freidel pairs 1 restraint Flack parameter: 0.1 (4)

Table 1		
T	In a second	 /Å

Hydrogen-bond geometry (A, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1−H1···N1	0.82	1.86	2.599 (17)	149

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2611).

References

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Jian, F.-F., Zhuang, R.-R., Wang, K.-F., Zhao, P.-S. & Xiao, H.-L. (2006). Acta Cryst. E62, o3198-o3199.

Rozwadowski, Z., Majewski, E., Dziembowska, T. & Hansen, P. E. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 2809-2817.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

organic compounds

T = 293 (2) K $0.12 \times 0.10 \times 0.07 \text{ mm}$ supplementary materials

Acta Cryst. (2008). E64, o1863 [doi:10.1107/S1600536808027360]

2-[(3-Bromophenyl)iminomethyl]phenol

X.-Y. Ren and F.-F. Jian

Comment

The recent growing interest in Schiff bases is also due to their ability to form intramolecular hydrogen bonds by electron coupling between acid–base centers (Rozwadowski *et al.*, 1999). The part of our research is to find Schiff base with higher biological activity, we synthesized the title compound (I) and report its crystal structure here.

In the crystal structure of compound (I) (Fig. 1), the dihedral angle between the benzene rings (C1–C6) and (C7–C12) was 4.6 (2)°. The C=N bond length [1.273 (1) Å] is in agreement with that observed before (Jian *et al.*, 2006). There are intramolecular O—H···N hydrogen-bond interactions to stabilize the crystal structure (Table 1, Fig. 2).

Experimental

A mixture of 2-nitrobenzaldehyde (0.02 mol) and 4-methoxyaniline (0.02 mol) was stirred with ethanol (50 mL) at 377 K for 5 h, affording the title compound (4.33 g, yield 84.5%). Single crystals suitable for X-ray measurements were obtained by recrystallization from acetone at room temperature.

Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with O—H and C—H distances of 0.82 and 0.93 Å, respectively, and with $U_{iso}(H) = 1.2$ or $1.5U_{eq}$ of the parent atoms.

Figures

Fig. 1. The molecular structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. A view of the packing and the intramolecular hydrogen bonding (dashed lines) of (I) in the unitcell.

2-[(3-Bromophenyl)iminomethyl]phenol

Crystal data C₁₃H₁₀BrNO

 $F_{000} = 276.0$

$M_r = 276.13$	$D_{\rm x} = 1.676 {\rm ~Mg~m}^{-3}$
Monoclinic, P2 ₁	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 1666 reflections
a = 3.9700 (8) Å	$\theta = 1.6 - 25.0^{\circ}$
b = 10.540 (2) Å	$\mu = 3.73 \text{ mm}^{-1}$
c = 13.200 (3) Å	T = 293 (2) K
$\beta = 98.00 \ (3)^{\circ}$	Bar, yellow
$V = 546.96 (19) \text{ Å}^3$	$0.12\times0.10\times0.07~mm$
<i>Z</i> = 2	

Data collection

Bruker SMART CCD area-detector diffractometer	1666 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.032$
Monochromator: graphite	$\theta_{\text{max}} = 25.0^{\circ}$
T = 293(2) K	$\theta_{\min} = 1.6^{\circ}$
φ and ω scans	$h = -4 \rightarrow 4$
Absorption correction: none	$k = -12 \rightarrow 12$
2736 measured reflections	$l = -12 \rightarrow 15$
1822 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.082$	$w = 1/[\sigma^2(F_o^2) + (0.1154P)^2 + 2.8393P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.229$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.13	$\Delta \rho_{max} = 1.43 \text{ e} \text{ Å}^{-3}$
1822 reflections	$\Delta \rho_{min} = -1.17 \text{ e } \text{\AA}^{-3}$
145 parameters	Extinction correction: none
1 restraint	Absolute structure: Flack (1983), 787 Freidel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.1 (4)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors *R* are based on *F*, where *F* is the threshold expression of $F^2 > \sigma(F^2)$ and $F^2 = \sigma(F^2)$.

factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
Br1	0.4943 (3)	0.6144 (2)	0.53030 (8)	0.0544 (5)
N1	0.643 (3)	0.4449 (9)	0.9014 (8)	0.041 (2)
C4	0.538 (4)	0.5109 (12)	0.7289 (10)	0.046 (3)
H4A	0.6652	0.5830	0.7485	0.055*
C10	0.793 (3)	0.3864 (10)	1.0766 (9)	0.036 (3)
C3	0.402 (4)	0.4950 (13)	0.6277 (11)	0.049 (3)
C11	0.800 (4)	0.2937 (12)	1.1480 (10)	0.043 (3)
H11A	0.7186	0.2137	1.1274	0.052*
C5	0.487 (3)	0.4229 (12)	0.8000 (10)	0.043 (3)
C8	1.128 (4)	0.5145 (14)	1.2004 (12)	0.057 (4)
H8A	1.2470	0.5889	1.2187	0.068*
C12	0.918 (4)	0.3124 (13)	1.2476 (10)	0.052 (4)
H12A	0.8763	0.2550	1.2978	0.062*
C13	0.644 (4)	0.3630 (11)	0.9723 (11)	0.041 (3)
H13A	0.5431	0.2846	0.9561	0.050*
C9	0.978 (4)	0.4994 (12)	1.1041 (10)	0.045 (3)
C7	1.110 (4)	0.4238 (15)	1.2716 (13)	0.060 (4)
H7A	1.2254	0.4348	1.3373	0.072*
01	0.995 (3)	0.5906 (16)	1.0355 (8)	0.081 (6)
H1	0.8925	0.5681	0.9801	0.121*
C6	0.304 (3)	0.3157 (12)	0.7675 (13)	0.050 (4)
H6A	0.2798	0.2530	0.8157	0.060*
C2	0.216 (4)	0.3883 (13)	0.5982 (12)	0.049 (3)
H2A	0.1275	0.3769	0.5298	0.059*
C1	0.157 (5)	0.2960 (13)	0.6708 (11)	0.054 (4)
H1B	0.0231	0.2250	0.6527	0.065*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Br1	0.0649 (8)	0.0635 (8)	0.0338 (6)	-0.0095 (9)	0.0028 (5)	0.0168 (7)
N1	0.053 (6)	0.034 (5)	0.034 (5)	-0.002 (4)	0.001 (5)	-0.001 (4)
C4	0.060 (8)	0.041 (7)	0.035 (7)	0.005 (6)	-0.002 (6)	0.001 (5)
C10	0.042 (7)	0.035 (6)	0.026 (6)	0.004 (5)	-0.009 (5)	-0.007 (5)
C3	0.053 (8)	0.053 (8)	0.040 (7)	0.006 (6)	0.000 (6)	-0.002 (6)
C11	0.052 (8)	0.045 (7)	0.035 (7)	0.015 (6)	0.009 (6)	0.002 (6)
C5	0.039 (7)	0.049 (7)	0.038 (7)	0.013 (6)	-0.002 (5)	-0.002 (5)
C8	0.061 (9)	0.043 (7)	0.060 (9)	-0.009 (6)	-0.015 (7)	-0.003 (6)
C12	0.073 (10)	0.045 (7)	0.034 (7)	0.001 (7)	-0.007 (6)	0.013 (6)
C13	0.060 (8)	0.028 (6)	0.034 (7)	0.004 (5)	0.000 (6)	0.000 (4)
C9	0.056 (8)	0.039 (6)	0.041 (7)	0.007 (6)	0.003 (6)	0.003 (6)
C7	0.052 (9)	0.066 (9)	0.060 (9)	0.002 (7)	-0.001 (7)	-0.005 (7)

supplementary materials

01	0.096 (8)	0.077 (16)	0.065 (7)	-	-0 043 (8)	-0.005(6)	-0.004(7)	
C6	0.035(7)	0.032 (6)	0.009 (1))) –	-0.009(5)	-0.002(7)	0.004 (6)	
C2	0.039(7)	0.052(0)	0.049 (8)	., (0.003 (6)	0.006(6)	-0.010(7)	
C1	0.039(1)	0.033(3)	0.017(0) 0.037(7)	-	-0.011 (7)	0.000 (0)	-0.013(6)	
01	0.001(11)	0.015 (0)	0.057 (7)		0.011 (7)	0.011(7)	0.015 (0)	
Geometric param	neters (Å, °)							
Br1—C3		1.872 (15)		C8—C7			1.35 (2)	
N1—C13		1.273 (17)		C8—H8A			0.9300	
N1—C5		1.414 (16)		C12—C7			1.41 (2)	
C4—C5		1.354 (19)		С12—Н12	2A		0.9300	
C4—C3		1.379 (19)		С13—Н13	BA		0.9300	
C4—H4A		0.9300		C9—O1			1.328 (19)	
C10-C11		1.355 (18)		C7—H7A			0.9300	
С10—С9		1.420 (18)		O1—H1			0.8200	
C10-C13		1.443 (18)		C6—C1			1.34 (2)	
C3—C2		1.37 (2)		С6—Н6А			0.9300	
C11—C12		1.348 (19)		C2—C1			1.41 (2)	
C11—H11A		0.9300		C2—H2A			0.9300	
C5—C6		1.381 (18)		C1—H1B			0.9300	
С8—С9		1.34 (2)						
C13—N1—C5		122.7 (11)		C7—C12-	-H12A		121.8	
C5—C4—C3		120.8 (13)		N1-C13-	C10		123.0 (11)	
С5—С4—Н4А		119.6		N1-C13-	-H13A		118.5	
С3—С4—Н4А		119.6		C10-C13	—H13A		118.5	
C11—C10—C9		117.9 (11)		O1—C9—	-C8		120.3 (13)	
C11—C10—C13		120.4 (11)		O1—C9—	-C10		120.4 (11)	
C9—C10—C13		121.1 (11)		С8—С9—	-C10		119.3 (12)	
C2—C3—C4		119.8 (14)		C8—C7—	-C12		120.8 (14)	
C2—C3—Br1		120.4 (11)		C8—C7—	-H7A		119.6	
C4—C3—Br1		119.7 (11)		C12—C7-	—H7A		119.6	
C12—C11—C10		122.9 (13)		C9—01—	-H1		109.5	
C12—C11—H11A	A	118.6		C1—C6—	-C5		124.1 (13)	
C10—C11—H11A	A	118.6		C1—C6—	-H6A		117.9	
C4—C5—C6		117.9 (13)		С5—С6—	-H6A		117.9	
C4—C5—N1		117.2 (12)		C3—C2—	-C1		120.5 (14)	
C6-C5-N1		124.8 (13)		С3—С2—	-H2A		119.8	
С9—С8—С7		121.2 (14)		C1—C2—	-H2A		119.8	
С9—С8—Н8А		119.4		C6—C1—	-C2		116.7 (13)	
С7—С8—Н8А		119.4		C6—C1—	-H1B		121.6	
C11—C12—C7		116.5 (14)		C2—C1—	-H1B		121.6	
С11—С12—Н12А	A	121.8						
Hvdrogen-bond	geometrv (Å. °)							
D H4	···· / (/ /		ם ת	тт	4	D 1		
$D = \Pi \cdots A$			<i>D</i> —п 0.82	П''' 1 04	A	D^{A}	<i>D</i> —п… <i>А</i> 140	
01—11NI			0.82	1.80)	2.399 (17)	149	

Fig. 1

Fig. 2

